The delayed or time-domain four-wave-mixing experiment is treated in the regime of intense near-resonant pulses. The interaction with the radiation during both pump and probe pulses is considered to all powers of the electric field amplitude. Analytical results are obtained for an effective four-level system. These include the dependence of the coherence amplitudes on the ratio of the pump-field intensities when there is a large vibrational discrepancy between ground and excited electronic states and a general solution for the unitary time development during the probe pulse. For the first time, delayed coherent anti-Stokes Raman scattering is detected from highly dilute (10-ppm) guest molecules. Illustrative examples are presented for the system of pentacene in benzoic acid at low temperature. Vibronic-free induction decay and the effect of field inhomogeneity across the beam profile are found to be essential for understanding the observed intensity and spectral distribution of the signal beam in the region of optimum pulse intensity.
展开▼